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- SUMMARY

As part of a combined experimental and analytical study

of vortex shedding at sharp edges characteristic of strakes

on fighter aircraft, numerical simulations were made of a two-

dimensional and a three-dimensional case. The former is aU
. .. sharp-edge flat plate normal to the flow, for which some

experimental data were taken earlier in this program. The

latter is a double-delta, sharp-edge wing at angle of attack.

In both cases, a free-stream Mach number of 0.5 was used. The

objective of the work was to investigate the suitability of

using the numerical simulation to augment experimental flow

field data, after the major features of the simulation were

verified by data.

Two existing Navier-Stokes codes developed at Ames

Research Center NASA were used for the numerical simulations.

Neither code had been used in an application involving flow

separation, sharp edges, and the aggregation of vorticity

into small regions in the flow such as the two present appli-

cations demonstrate. The applications of the codes were

largely successful, in that for both applications the numeri-

i cal flow fields generally reproduced the gross flow features

exhibited by experimental data.

The larger objective of demonstrating the suitability

of using numerical simulations to augment experimental data

- was not achieved. The principal difficulty in both applica-

tions was mesh resolution. In the two-dimensional case, the

mesh resolution was inadequate to determine the details of the

boundary layer on the windward side, particularly near the

edge where experimental data is very difficult to obtain. In

the three-dimensional case, the problem was exacerbated by the

requirement to store more information. In this case there

were differences in the location of the peak suction pressure

-%1



on the wing and the vorticity distribution above the wing

which were caused, at least in part, by mesh limitations. The

objective is felt to be attractive and feasible, but consider-

able care must be taken in the numerical simulation to permit

the mesh to capture and accurately represent important flow

phenomena.
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1. INTRODUCTION

The use of strakes, or leading edge extensions, on recent

-' fighter type aircraft has been shown to improve greatly the

high angle of attack aerodynamic characteristics of these air-

craft. The beneficial effects stem from the formation of

leading edge separation vortices on the highly swept strake

and the subsequent interaction of these vortices with the flow

over the wing to produce significant lift on the wing-strake

combination at considerably higher angles of attack than is

- .the case for the wing alone. These benefits have been derived

primarily by cut and try methods in wind tunnel tests during

aircraft development programs. Some studies of strake aero-

Vdynamics have been undertaken but the understanding of the

fundamental fluid flow phenomena necessary to do a priori

design of strake-wing-body combination does not exist. The

purpose of this report is to describe a fundamental investiga-

tion undertaken to help fill this need. This investigation

builds on the recent work that has been started on strake flows

and on recent advances in numerical techniques for predicting

fluid flows.

The present study is part of a larger program conducted

.-by Nielsen Engineering & Research, Inc. (NEAR) for the Office

of Naval Research under Contract N00014-78-C-0388. The first

part of that work involved some two-dimensional tests in a wind

tunnel at the NASA Ames Research Center as a first step in

developing a method for predicting the rate at which vorticity
*- is shed on a strake edge. That work is reported in reference 1.

The current work reported herein involves numerical simulation

of flows over surfaces with sharp edges. In addition to this

* numerical simulation work, the program was to include some wind

tunnel tests on a highly swept wing to obtain three-dimensional

7
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data which would be combined with the numerical and two-

dimensional results to develop and evaluate an engineering

prediction method for leading edge shedding rate.

One of the difficulties in using the three-dimensional

data is the fact that the detailed flow field data acquisition

is a time consuming process and the quantity of data that can

be obtained in a reasonable tunnel entry is not as great as

one would like. Also, it is very difficult to obtain boundary

layer measurements, particularly near the edge where the flow

separates, which is the region of greatest interest. There-

fore in this study a recently developed computational tech-

nique for solving the Navier-Stokes equations is extended to

treat flows with leading edge separation. These numerical

results can then be used together with the experimental data

to validate the theoretical flows and to define the flow field

in greater detail, particularly in the windward side boundary

layer and near the edge. The combined theoretical (numerical)

and experimental flow fields can then be used to develop the

engineering design methods.

Thus the driving force for using a numerical simulation

of the flow to supplement the experimental work is the relative

difficulty of obtaining sufficient detailed flow characteris-

tics from the latter. The kinds of details required for the

development of an engineering prediction method are the vor-

ticity in the subsequent separated vortex. Some of the exist-

*- ing Navier-Stokes computer codes, especially those developed

by the Computational Fluid Dynamics (CFD) Branch at NASA Ames

Research Center, are available to help define the flow in

more detail. However, before embarking on a discussion of the

numerical compuations it is helpful to be more specific about

the problem to be solved.

8
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Modern strake configurations are curved, highly swept and

blend into the wing to give a "double delta" appearance. To

ensure a clean separation of the strake vortex, the strake

leading edge is sharp. The free-stream Mach number at high

*" angles of attack where strake vortex formation is important

tends to be subsonic. Finally, the strake-wing combination will

operate at high angles of attack, e.g., 300. These c *racter-

istics are not common in the usual computational flu* dynamics

problems. The only available three-dimensional code -,lica-

ble to the problem is that of Lomax-Pulliam of the C7 3ranch

at Ames Research Center. The code uses a fully impl. - delta

form algorithm developed by Beam and Warming (ref. 2). The

main conceptual difficulty of the code is that it solves a "thin
"4 layer" approximation to the Navier-Stokes equations. This

approximation essentially consists of the retention only of

those second derivatives normal to the surface. This allows

treatment of separated flows.

The remainder of this report is concerned with the two

problems studied. The first problem is a two-dimensional

"" - variant of the configuration examined experimentally in com-

pleted work for ONR (ref. 1). This work generated information

Kon the required grid clustering, convergence rates, boundary

conditions at the sharp edge, and the ability (and limitations)

of the code to predict the flow. The two-dimensional experi-

mental results of reference 1 are used for comparisons. The

information gained during this phase of the investigation was

then used in the solution of the more complex three-dimensional

problem. Since the two problems are solved by different codes

and are sufficiently dissimilar, they will be discussed in the

two following sections separately.

It
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2. TWO-DIMENSIONAL CASE

The problem of interest is the two-dimensional flow

approaching a flat plate, as shown in the left sketch below.

In the numerical simulation, the plate is treated as infinitely

shear shear
y layer layer

x

tV tV
thin and thus has sharp edges. For comparison purposes, data

are available from reference 1 for a configuration shown in

the right sketch. The plate has a sharp edge with a finite

angle (a cusp) and a splitter plate extending well downstream

to prevent alternate vortex shedding which can occur when the

two sides of the flow can communicate with one another.

The data (ref. 1) which are available for comparison are

static pressure distributions on the front face, two orthogonal

velocity components in the flow field near the edge of the

plate, and the location of the reattachment point at the rear

of the separation bubble behind the plate. The velocity data

0 can be used to calculate vorticity, rate of transport of

vorticity, and circulation in specified contours in the flow

field.

10
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The experiment was conducted at Mach numbers of 0.25 and

[ 0.5 at a Reynolds number based on the half face width in the
6

range of 0.15 - 0.25x106. Thus the boundary layer on the

- .front face approaching the edge is laminar.

2.1 Governing Equations

The equations governing the flow adjacent to the two-

* dimensional strake are the compressible Navier-Stokes equations.

Since the Reynolds numbers are 0.5×10 or less, laminar flows

only will be considered. The equations are in Cartesian

S- coordinates

I- q + -E +- F+ Re R R+ S) (

- - where

P . PV 0,
2q( u + u ., v ,u + Uy v

"05 2 R xxS xy
PV pu PV +p xy yy
e jk(e+p)uj (e+p)v J 45S4

(2)
where

* x = (X + 2 u)u x + v , rx = ( uyu + v )

T yy = (A + 2u)v Y+ Au x

4 xy xy

S Ur + Vr + K Pr 1  (a
4 xy yy (Yl~a )

. 11



and

p= (Y- l){e - p(u 2 + v2)1

Here

y = specific heat ratio

p = pressure

a = sound speed

Re = Reynolds number

K = thermal conductivity coefficient

X = -(2/3)p, by Stokes hypothesis

P = viscosity coefficient

Pr = Prandtl number

The velocity components are nondimensionalized with

respect to the free-stream sound speed a., the density p

with respect to p., and the total energy e with respect to
2pGa 2 . The pressure is referenced with respect to ypo.

Since the two-dimensional strake is a thin flat plate,
the Cartesian mesh is ideally suited for this case. However,

clustering is necessary to adequately resolve the flow field

near the plate. Thus two one-dimensional clustering functions

are introduced,

= (x),

TI= ) (y), (3)

T =t.

Under this transformation the governing equations become

T qnFRe 1  Yn R + x } (4)

12
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where

= -q/J

A

F x°SI.

and, for example,

T = (X + 2u) u + V Yn

The transformation Jacobian is

J = l/(xFy n ) (5)

The viscous terms are resolved only in a thin layer near

the body due to lack of sufficient computer capacity. The

viscous terms in y only are retained and those along E (along

the strake surface) are dropped from the equations. Thus

equation (4) is simplified to

"q a + "E + F^ = :e 1 ()

where

'l 0

.A =x {(u n
, Y {(4/31.)v n

{K ": 1" l 1 a 2 + (/2) - (u 2  + v 2 )I

The nomenclature is shown in Figure 1.

The thin layer model is a useful simplification incorpor-

ated in the numerical codes used for this study (refs. 2 and 3).

13
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For this two-dimensional case where is normal to n, the
viscous terms dropped are the same as those deleted in boundary

layer theory. However, the normal momentum equation is

retained in the thin layer model and the pressure can vary

through the viscous layer. Therefore, the thin layer model

does not incur the matching problem of boundary layer theory

with the inviscid field and separation points are not singular

points.

On the body surface In(y) = 0 and E(k) < 1], the no slip

condition requires

The pressure on the body surface is obtained from the normal

momentum equation which for this configuration is the

*y-momentum equation.

The other four surfaces of the flow domain of Figure 1

are the symmetry plane, inflow and outflow planes, and the

far field boundary. Symmetry conditions are imposed on the

* plane of symmetry. Free-.stream conditions are imposed on the

inflow plane and the far field boundary.

On the outflow plane zero gradients of all the flow

variables are imposed.

2.2 Numerical Algorithm

The numerical algorithm used to solve the transformed

equations and boundary conditions is the time-implicit numeri-

* cal algorithm developed by Beam and Warming (ref. 2). Since

the scheme and the code has been reported elsewhere (refs. 2

and 3) it will not be presented here again. The reader is

referred to the cited references.

14



2.3 Checks on the Numerical Results

I The numerical results were obtained on a thin flat plate

of unit semispan normal to a flow with free-stream Mach number

of 0.5. The Reynolds number based on free-stream velocity

and semispan is 0.5x106. The schematic of the flow geometry

SL is shown in Figure 1. The inflow and outflow boundaries are

at eight and twenty semispans upstream and downstream of the

. plate, respectively. The centerline is a plane of symmetry

* and the far field boundary is nine semispans from the center-

line. The boundaries of this domain were determined by

- .numerical experimentation so that the flow field in the

neighborhood of the plate did not change with any further

extensions of the boundaries.

Checks were made to evaluate accuracy, resolution, and

convergence of the numerical solution. On the windward side

of the plate the flow is essentially a stagnation-point-like

flow which has an exact solution for incompressible flow.

Figure 2 depicts the pressure coefficient at the windward stag-

" nation point as a function of the initial mesh spacing normal

to the plate. The theoretical pressure coefficient based on

isentropic compression at M.0 = 0.5 is Cp = 1.0641. Most of
L the results for this figure were obtained for a flow domain

substantially smaller than the final domain. The outflow

boundary was at eight semispans downstream of the plate for

the first set of four runs, labelled points (a), (b), (c),

*and (d). The run for point (e) was with the outflow at

twenty semispans downstream.

* *The first case, point (a), has a mesh spacing normal to
* L the plate of 0.001 (all lengths are nondimensionalized with

respect to the plate semispan). The mesh point distribution

is 24 points on the windward side of the plate, 21 points on

the leeside, and 78 points parallel to the plate of which 41

* points are on the plate equally spaced at Ax = 0.025. The

15



stagnation pressure is 0.62 which is about 40% lower than the

isentropic pressure of 1.0641. For this case there are 8

points within the boundary layer on the windward side. Thus

there are only 16 points between the inflow boundary and the

viscous layer.

Increasing the number of points in the windward inviscid

region at the expense of leeward side resolution gives the

results of point (b). The stagnation pressure is up to 1.13

which compares favorably with the exact value. Further

increases in the number of mesh points in the windward boundary

layer (to 12) and the inviscid region (to 28 from 24) and pro-

perly resolving the leeward region gives the results of point

(c). There is no further improvement.

Reducing the mesh spacing normal to the plate to 0.0002

(from 0.001) and increasing the number of boundary layer points
to 15 gives the results shown by point (d). Here the pressure

coefficient is 1.67, some 60% too high. With this small initial

step size, the mesh must be rapidly expanded to reach the

inviscid layer with approximately the same number of mesh points.

The thin layer approximation used in the code is not correct

for highly stretched meshes according to reference 4. The

numerical results seem to verify the contentions of reference 4.

Since it was not possible to change the thin layer approxima-

tion, it was decided to choose a stretching function and mesh

spacing so that the thin layer approximation as used in the

code did not introduce an appreciable error. Thus 30 points

were selected upwind of the plate with 8 points in the boundary

layer and an initial mesh spacing of 0.0005. The flow field

on the leeside of the plate with the outflow boundary at 8

semispans downstream of the plate indicated that the separation

bubble was not closed. Experimental data indicated that the

separation bubble should extend approximately 8-10 semispans
downstream of the plate. For that reason the outflow boundary

16
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was extended to 20 semispans downstream. With this outflow

boundary 48 points were needed to properly resolve the separ-

ated region and the shear layers. This mesh arrangement is

the final one used for the numerical results and is shown as

point (e) on Figure 2.

P The grid network for this final configuration is shown in

Figures 3 and 4. The former shows the entire grid and the

- latter shows the detailed mesh near the plate.

The convergence history of the numerical solution process

. is shown in Figure 5. The L residual error drops more than

3 orders of magnitudes in about 4000 iterations. The time

step was taken to be at At = 0.01 for the first 4000 iterations

band then reduced to 0.001 for the last 2000 iterations. Since

the algorithm is implicit, excessive dissipation occurs for

large time steps. This has the tendency to smear the shear

layers out too much. By reducing the time steps at the end of

the run the shear layers can be "sharpened up" to yield more

meaningful results.

The final check to verify the numerical results was made

by comparing the boundary layer profiles on the windward side

of the plate with the exact solution available for the incom-

pressible Navier-Stokes equation for laminar flows (Rosenhead,

*- ref. 5).

A brief description of the exact solution for a stagnation

point flow is appropriate. A stagnation point flow on a flat

*plate is defined as a flow where the velocities external to

the boundary are given by

ue = kx and ve = -ky

where k is a constant dependent on the normalization used to

nondimensionalize ue , ve , and y and the inviscid flow field.

17



* . The subscript 'e' refers to the flow external of the boundary

layer. For an infinite flat plate ue is independent of y.

*i However, for a finite flat plate ue attains a maximum at the

-' edge of the boundary layer and then decays with increasing y.

* .. This is shown in the sketch in Figure 6. Therefore, for the

finite flat plate Umax must be linear in x for the flow to

be a stagnation point flow. This linearity is shown in

Figure 6 for the numerical solution. As shown the constant k is

k = 0.57 V/t

The exact solution (Rosenhead, ref. 5) is given in terms of a

similarity solution, and the similarity variables are

n = y = (0.57)[. lV

u = kx f'(In) = 0.57 VI f'In)

and

v = N- (k) 1 /2 f(n) = (0.57) 1/2 o ( f(n)

The boundary layer profiles in terms of the similarity

variables are shown in the next two figures. The numerical

results agree fairly well with the exact solution, although it

is apparent that the boundary layer should be resolved better

with more mesh points. This can be seen by the difference

between the numerical and exact solution in Figures 7 and 8.

However, as indicated previously, increasing the resolution

1
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in the boundary layer at the expense of the inviscid region

n causes errors in the stagnation pressure and reducing the

normal step size near the plate introduces errors from the

thin layer approximation. So the mesh point distribution as

shown in Figures 3 and 4 was accepted as a workable compro-

mise. However, as will be shown later the thicker numerical

boundary layer on the windward side will effect the sharpness

of the shear layer coming off the plate edge.

* The velocity vector plot for the entire flow domain is

shown in the several parts of Figure 9. The details near the

plate are in Figure 10. As shown there is a large separated

flow region behind the plate extending some 11.5 semispans

downstream. Within this region is a small secondary separated

flow region just inboard of the leeside of the plate edge.

This can be seen better in Figures 11 and 12. The boundary

layer profiles are also readily apparent in these two figures.

Apparent in the former figure is the constant thickness of the

boundary layer on the windward side of the plate. Also appar-

ent in the latter figure is the shear layer coming off the

plate edges.

The shear layers and separated flow region can be better
observed in the stream function contour plots shown in figures

13, 14, and 15. These three figures depict the stream functions

of the entire flow domain, the primary separated zone, and the

secondary separated region, respectively. As can be seen the

primary separated zone extends about 11.5 semispans downstream

of the plate. The secondary bubble although small does extend

over 20% of the semispan length and being near the tip of the

plate has an influence on the shedding rate. Contour levels

of Mach number, pressure, and density are shown in Figures 16,

17, and 18.

1
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2.4 Comparison with Experimental Data

An extensive set of experiments was conducted on two-

dimensional strakes as reported in reference 1. In this

section the numerical results are compared with those experi-

mental data and some theoretical data.

The first comparison, shown in Figure 19, is the static

pressure along the windward side stagnation streamline. The

data consists of measurements on the plate surface plus, in

the M = 0.25 case, static pressures deduced from velocity

measurements off the surface using the incompressible Bernoulli

equation. The numerical results at M = 0.5 resemble the

behavior of the experimental data for M. = 0.25 and would be

in relatively good agreement if the numerical results were

displaced downward to cause the C on the plate to agree.

The static pressure on the face of the plate is shown in

Ficure 20. Except for the constant shift upward of the numeri-

cal results due to the differences of pressures at the stagna-

tion point, the numerical and experimental data agree quite

well. We note that the experimental pressure coefficient of

1.06 at the stagnation point agrees within 1% of the theoreti-

cal isentropic values of 1.0641. As discussed previously the

numerical stagnation pressure depends on the boundary layer

and the inviscid region resolution.

There are two principal differences between the numerical
A and experimental results. One is the sharpness of the shear

layer. The lack of mesh resolution has the effect of spreading

the numerical shear layer and thus making the velocity gradi-

ents less severe than is indicated by the data. Also the fact

that the physical model has a cusp while the numerical model

has zero plate thickness may have some influence on the differ-

ences in the gradients. The second difference is due to the

2
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small secondary separation bubble near the leeward edge in the

numerical solution which causes the v component to be every-

*where downstream (positive), whereas the data show an upstream

flow (negative v) in the recirculation region inside the shear

layer. The effect of Reynolds number (0.15x106 for experiment

and 0.5x10 6 for numerics) is not important. The rapid change

of the axial gradients of the spanwise velocity at the same

spanwise location is shown in Figure 23.

The spanwise variation of the velocity components at a

station just behind the model face (y & 0.2) is given in

Figures 24 and 25. The same trend is shown here, i.e. sharper

experimental shear surfaces. The effect of the secondary

*separation bubble is apparent in the numerical results for

x < 1. The velocity gradient variations at the same axial

station are shown in Figures 26 and 27. The vorticity defined

as

Du Dv

is shown in Figure 28 as a function of span at the same axial

location. Figure 29 gives corresponding vorticity transport

rate (v) variation. Although all of the experimental gradi-

ents are higher than the numerical ones, the combination of

*- the lower gradients and higher v produce vorticity transport

rates similar to the data.

The next set of six figures (30 through 35) presents the

same sequence of results as shown by the previous six figures

except at an axial station ^.1.1 semispans downstream from the

model face. The rapid decay of the spanwise velocity compo-

nent (u) is evident. This decay is much more rapid for the

numerical results. This is due not to any physics but to a

lack of adequate mesh resolution. At this location of the

shear layer (y z 1.1 and x 1.7) the mesh is substantially
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coarser than at the plate tip (see Figures 3 and 4). Since

the numerical error and numerical dissipation is proportional

to O(Ax 2 , Ay2, AxAy) for the implicit scheme used in the code,

the increasing coarseness rapidly increases the effective

dissipation of the scheme and thus the shear layers will be

spread much faster than dictated by the physical dissipation.

The lack of adequate resolution will affect the other

properties of the shear layer as shown by Figures 36, 37, and

38. The first figure is the axial variation of the stream-

wise vorticity transport rate, R, defined by

CoR =Jv dx
0

Shown are two sets of experimental data. One set is based on

the above formula and the other set is based on a thin shear

layer approximation where

Du av
ay ax

- dv
dx

o o v2 2
I0 v 0v 2  v -vc

R f v v- dx - d(--) - o

i i

and o and i represent the outer and inner edges of the shear

layer, respectively. The vorticity transport rate was computed

from the exact formula by the trapezoidal rule for the numeri-

cal results. As can be seen from Figure 36, the numerical

vorticity transport rate is low compared to the experimental

results.

Also shown on this figure are the numerical vorticity

transport rates at a point where the shear layer is jst coming
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off the plate edge. In this case the transport rate is

* 6w

R = - J u dy

-6.e

= R- dy 6 _6_

where u6 is the spanwise velocity component at the boundary

layer edge on the windward side of the plate tip and u6 t is the

corresponding velocity on the lee side of the plate tip. The
bcalculated vorticity transport rate in the shear layer and the

boundary layer at the tip agree fairly well. The differences

between the numerical calculation and the experimental data

are the same no matter how they are computed.

The effect of decreasing numerical resolution and thus

the faster spreading rate of the shear layer is quite evident

in this figure and the following two figures. Figure 37

depicts the integrated vorticity (y) along various axial sta-

tions. The integrated vorticity is defined as

y = dx

0

which becomes with the thin shear layer approximation

v i  - vo0

Again the lower values for the numerical results are evident.
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The circulation, F, can be computed around rectangular
(U- contours at many y locations, each contour extending spanwise

from the symmetry plane to the far field boundary and having

a streamwise length of 10% of the plate semispan. This com-

parison is shown in Figure 38. The circulation is essentially

zero upstream of the plate face, a rapid increase occurs just

after the face to a final peak at about 1.5 semispans down-

stream of the face and then a gradual decay. As expected the

numerical results are lower than the experimental data.

Another difference between the numerical results and the
experiment is the lateral extent of the primary separation

bubble. This can be observed by comparing figures 39 and 40
with Figure 23(b) of reference 1. Shown in these figures are

the axial velocity profiles at various axial stations behind

the model face. If v = 0 is used as a measure of the size of

the primary separated flow region, then the experiment indi-

cated for y = 2.0 that v = 0 at x Z 1.8 whereas for the compu-

tations x = 1.0. The proper measure of the size of the sepa-

rated region is the dividing streamline (the streamline

emanating from the tip of the plate) as shown in Figure 15

for the numerical computations. Unfortunately this is not

available for the experiment. It can be approximated, however,

from Figure 23(b) of reference 1 to be at x = 2.1 for y = 2.0.

The numerical dividing streamline is at x = 1.6 (Fig. 40).

Thus the spanwise extent of the primary separated region is
0 much smaller for the numerical results.

There are at least two possible reasons for this discre-

pancy. One is the model configuration. The experimental model

has a finite thickness plate, finite tip angle, and a splitter

plate whe reas the numerical configuration consists of a thin

flat plate with a plane of symmetry having no boundary layer

instead of the splitter plate with its own boundary layer.

These differences in the model geometry can be expected to
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enlarge the separated region. The second reason is the differ-

cence in the secondary separation regions. In the numerical

simulation, there is a secondary separation on the downstream

side of the plate near its edge, as shown on the left sketch.

The experiment has a secondary separation region

V

on the splitter plate as shown on the right. There was also a

• difference in channel half-width (9 for the computation vs. 12

for the experiment) although this should have very little effect

on the problem.

While the numerical results show good qualitative agree-

*ment with the experiment, the mesh points must be better distri-

" buted or the number must be increased to properly resolve the

shear layers. If the shear layers are not sufficiently resolved

then little accuracy can be expected from the nuemrical compu-

tations about the vorticity shedding (transport) rates or the

circulation. While the general features of the flow field are

fairly easy and inexpensive to compute, accurate details of the

Ufield are much more expensive unless flow adaptive meshes are

incorporated into the numerical computations.

3.0 THREE-DIMENSIONAL PROBLEM

A calculation of the flow field about a 750/630 double-delta

wing was performed on the CDC 7600 computer using the version

AIR3DP5 of the code AIR3D developed by Pulliam and Steger and

described in reference 6. The code solves the three-dimensional

"thin layer" Navier-Stokes equations by an implicit approximate

factorization finite-difference algorithm. The body surface must

be topologically similar to a hemisphere cylinder.
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As in the two-dimensional code, the thin layer approxima-

Ntion means that the only second derivatives which are retained in

. . the viscous terms are those normal to the body. This is necessi-

. -tated anyway because the available computer storage only allows

* - us to cluster the grid in one direction, namely a "boundary-layer

like" coordinate normal to the body.

The wing configuration used in the calculations was that

* .selected originally for the three-dimensional wind tunnel test.

The sweep of the forward part of the wing (750) is essentially

that of an aspect ratio 1 delta wing, on which Hummel (refs. 7

and 8) has taken surface pressure and flow visualization data

which could be used to evaluate the computed results forward of

the break in sweep. The sweep of the aft position of the wing

was selected first to be not so different than that of the for-

ward part that the leading edge vortex from the forward part

would "tear off" at the break in sweep and second to be close to

a double-delta wing for which some data exist. Wentz (refs. 9 and

10) has taken data on a number of double-delta wings, one of which

has sweeps of 750 and 620. The data consists of forces and

moments, oil flow, surface pressures, and velocities above the

wing. This configuration is sufficiently close to the 750/630

wing to permit evaluation of the numerical results.

3.1 Body Geometry and Mesh Arrangement

The computational body is pictured in orthographic projec-

tion in Figure 41. The planform is a double-delta shape with

sweep angles of 750 and 630, with the break in sweep occurring at

midchord (x= 0.5). Because of coding requirements, the body is

extended aft of the root chord position at constant semispan (the
"sting"), thus implying a second break in sweep to 90° at the tail

plane x = 1.0. All dimensions are normalized to root chord.

The cross sections are ellipses chosen so that the vertical

* axis is .01 root chord and the horizontal axis is equal to the
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semispan. This sectional shape allows the use of orthogonal

elliptic coordinates in the crossflow planes, as can be seen in

the grid plots (Fig. 42). Since the vertical axis is constant and

the semispan varies, the axis ratio E of the ellipses is not con-

*stant but varies from more than one near the nose to about .013

at and aft of x= 1. Hence, the configuration is not conical.
In order to avoid a coordinate singularity at the nose,

the body was truncated at x = .01 and a prolate spheroidal "cap"

was appended thereto.

Physical coordinates (x,y,z) are chosen so that x increases

from zero along the chord line going aft, y increase toward star-

board and z increases upward. Computational coordinates (

are chosen so that 4 = 0 is the body surface. Except on the cap,

& measures the axial distance and is equal to x. n is an azi-

Lmuthal angle and C increases radially outward. Both systems of

coordinates are right-handed. On the cap, coordinate E measures

3 the polar angle.

Let b(M), E > .01, be the semispan as a function of radius.

Thus,

tan 150, .01 < < 0.5

b( ) 0.5 tan 150 + ( - 0.5) tan 270, 0.5 < < 1

0.5 (tan 150 + tan 270), 1.0 <

Let bmi = .01 tan 150 and b m  = .5 (tan 150 + tan 270). Then,

the transformation between physical and computational coordinates

is as follows:

On the cap:

" ~x = 01O- / 2 + 2. cosn cos~
min

y = bmin2 cos n sin

z = sin n sin
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On the wing:

y /2 + [b()1 2 cos 11

z = sin n

On the sting:

y = / + b 2  cos f
max

z = r sin i

The computation takes place in a cubical domain pictured

in Figure 43 (see also Fig. 2(b) of ref. 1). The computational

coordinates are discretized so that

= F(J), J = 1,30

= n(L), L = 1,30

= C(K), K = 1,24

The cross flow planes are represented by J - constant computa-

tional planes, and are tabulated in Table 1. The nose is at

J = 8 and the sting begins at J = 24. There is a singular

line at J = K = 1 corresponding to the pole of the cap. This

singularity is avoided in the finite-difference version of

0 the problem because the fluxes in the C- and - directions

vanish identically on this line (ref. 6).

The mesh is clustered in the axial direction near the

nose, break in sweep, and root chord, and in the circumferential6
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TABLE I. 750/630 DOUBLE DELTA WING CALCULATION
Mesh Crossflow Planes

Ellipse Wentz CoordinateIndex Chord Semispan Axis Ratio X l-z
J z(J) b(J) A Ratio=

INI
62

3

S, I4 Nose region "cap"

6

7

8 .0100 .0026 1.92 2.547
9 .0341 .0091 .55 2.485

10 .0824 .0220 .227 2.360

11 .1579 .0423 .118 2.166

12* .2496 .0669 .075 1.930

13 .3408 .0913 .055 1.696

14 .4162 .1115 .045 1.502

15 .4683 .1255 .040 1.368

.50 --------- Break in sweep --------------------
16* .5025 .1353 .037 1.280

17 .5384 .1535 .0326 1.187

18 .5936 .1816 .0275 1.045

19 .6712 .2212 .0226 .846

20* .7632 .2681 .0187 .609

21 .8543 .3145 .0159 .375

22 .9287 .3524 .0142 .183

23 .9761 .3765 .0133 .061

24* 1.00 .38874 .0129 0

25 1.031 -.080

26 1.123 -.316

27 1.389 -1.001

28 2.166 -2.999

6 29 4.425 -8.811
30 11.000 _ _ _ _ _ _-25.724

lndicates plots 29
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direction near about 80% semispan on the leeward side where we

expected that the primary leading edge separation vortex would

form. In the circumferential direction, one extra point

beyond the plane of symmetry at each boundary is required by

the code for implementing the boundary conditions. The radial

direction is clustered so that 8 of the 24 points lie within

.15 chordlengths of the body surface. The grid is exponen-

tially stretched out to an outer boundary 10 chord-lengths

away. Figures 42 and 44 give typical views of the grid.

The grid generation routine calculates x(J,K,L), y(J,K,L),

z(J,K,L) for each of the 21,600 grid points and stores these

on tape for use in the calculation itself and the graphics

display package.

3.2 Calculation Procedure

The free-stream Mach number of the calculation was 0.5.

This was large enough to let the calculation converge but small

enough to prevent the development of a large supersonic region

near the edges. The angle of attack was 150, so the Mach

number in the crossflow plane was 0.13. The Reynolds number

was 0.5x106 based on root chord, and a laminar boundary layer

was selected. The Prandtl number was 0.72 and the free-stream

temperature was 500*K.

The calculations were run on a CDC 7600 computer at Ames

* Research Center. Two smoothing parameters were used in AIR3D,

as described in reference 6. The explicit smoothing parameter

was set at 0.1 and the implicit parameter was set at 1.0,

based on previous experience with the code.

Following past experience with the code, the boundary

conditions were entered during the first 30 iterations, and

the code was run at a timestep of 2xl0, corresponding to

a Courant number of about 4 for 500 iterations. The timestep
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was increased to 5xlO 4 (CFL z 10) after 100 iterations and

P to 10x10 "4 (CFL : 20) after 1400 iterations. The program was

run for 9500 iterations, until the residual was down by about

a factor of 30. The CPU time per iteration was about 17

seconds. Thus, even on this relatively coarse grid, the calcu-

lation required more than 80 hours of CPU time. The convergence

history is shown in Figure 45.

3.3 Results

The flow field (i.e., values of the density, three compo-
nents of the velocity, and the internal energy at every grid

point) was written into a disc file for analysis and graphic

display.

The closest experimental comparison to this calculation

*is the work of Wentz and McMahon (refs. 9 and 10) who used a
750/620 double delta pictured in Figure 46. There are two

primary differences between the experiment and the calcula-

tion. The experimental model has a fuselage attached, and

has a sharp trailing edge, while the computational model has

neither. Also, the experiment was run at M z .16 while the

calculation was at M = .50 (the latter was necessitated in

order to obtain convergence within a reasonable time). Wentz's

most complete data were obtained at angles of attack of 100 or

* 200, so the comparisons at 150 are somewhat limited.

Plots of the flow field were obtained for every crossflow

plane aft of the nose. Four sets of these are reproduced here.

Figures 47(a)-(h) show the flow field at about one-quarter

root chord, halfway between the nose and the break in sweep.

Figures 48(a)-(h) show the flow field just aft of the break in

sweep at mid-chord. Figures 49(a)-(h) show the flow field at

three-quarters chord and Figures 50(a)-(h) show the flow field

at the root chord where the sting begins.
14
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For each of these chordwise stations are plotted (a) the

mesh, (b) an overall view of the crossflow velocity field,

(c) a closeup of the velocity field near the tip, (d) a plot

of C along the wing surface, and (e) contours of the cross-
p

flow Mach number, with 20 equally spaced levels between maxi-

mum and minimum Mach number, AM 4 .05. Figure (f) of each

set shows the vorticity contours, with levels exponentially

concentrated near the maximum value. In all cases the con-

centration is very near the tip. Figure (g) of each set

shows contours of density and Figure (h) of each set shows

contours of total pressure, with equal increments between

contours.

The most important qualitative features of the flow can

be seen in the velocity vector plots. One can see the primary

vortex system forming at about x = .25. The center of this

vorticity moves inboard until at the tail plane, its center

is at about y = .22 and z = .12, or, in terms of semispan,

y/b % .6 and z/b z .3. This may be compared with the simpli-

fied theory of Brown and Michael (ref. 4) which predicts a

location y/b = .88, z/b = .14. We can see that the onset of

primary separation occurs at about x = .25 and that the separ-

ation line reaches the plane of symmetry at about x = .5.

One can see the development of secondary separation near the

tip in Figure 50(c), but the mesh is too coarse to resolve it.

In the same figure, note the typical boundary layer profile on
the lower surface. This feature is qualitatively correct, but

the profile should have a much smaller thickness. This is

again due to the inadequacy of the grid, even though it is the

largest that can be run on the CDC 7600.

Looking at the pressure contours, we find that the C
p

distribution is very sharply peaked near the tip, unlike the

experimental (i.e., ref. 8 for a delta wing and ref. 9 for a

double delta) results which show milder peaks at about 70%

32
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semispan. Indeed, there is a small region where the crossflow

is supersonic, even though the crossflow freestream Mach

number is about 0.13. Perhaps this is due in part to the

unevenness of the mesh in the region and a large concentra-

tion of grid points near the tip.

The other plots are more or less self-explanatory. Con-

tours of the pressure coefficient on the wing surface are pre-

sented in Figure 51. Wentz's experimental result is presented

.- in Figure 52. Several features are different. In the calcu-

lation, we find a minimum Cp of -2.45, which corresponds to a

slightly supersonic Mach number. Wentz's minimum C is about
p

-1.95. Part of this is due to compressibility. Applying the

Prandtl-Glauert correction (the effect of compressibility to
Nfirst order - see ref. 11) yields the following comparison:

Wentz's value (at M = .16) is corrected to

[Cp(l-M2)i/ 2 ] mi = - 1.93

and our minimum (at M. = .5) is corrected to

[Cp(l-M) 1 / 2 ]mm = - 2.12

The predicted vortex lift is more concentrated and further

*outboard (near 95% semispan) than the experimental result,
which shows the locus of minimum Cp at roughly 70% of the semi-

span.

On the computational wing there is not as much lift on

the portion near the nose. This is due, at least in part, to

the absence of a forebody which for the Wentz results causes

additional upwash near the wing leading edge where the span

is the same order as the body radius.
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The total circulation, nondimensionalized as r = F/2V bmax

to compare with Wentz's measurements, was calculated over half

the wing by performing the contour integration { .dt over the

contours shown in Figure 53. Contour C1 encloses the entire

flow field bounded by the plane of symmetry. Thus the contri-

bution on the wing surfaces vanishes due to the boundary

condition v = 0. Contour Cv encloses the upper quadrant of

the flow field but excludes the first three grid points from

the wing surface (i.e. the "boundary layer"). This is a closer

Uapproximation to the contour Wentz used, since he could not
obtain measurements in the boundary layer. The circulation

is presented as a function of axial distance in Figure 54.

Theoretical values according to Jones (linear theory, ref. 3)

and Brown and Michael (concentrated vortex core, ref. 12) are

shown for a = 150. Wentz's experimental results for a = 200

and his contour are shown in Figure 55. In both cases the

results lie between the two theoretical curves. The falloff

in circulation over the aft half of the wing is due to the

presence of the trailing edge in the experiment and the "sting"

in the calculation. A more recent experiment by Sforza and

Smorto (refs. 14-15) also has shown a value for the circulation

which lies between the Jones and Brown-Michael theories.

Integrating the pressure coefficient over the body surface,

we find a normal force coefficient

SCN = -N = 0.7738
N qS

and a lift coefficient CL = CN cos(150 ) = 0.747. Here S is the

planform area and q = I PU2 is the dynamic pressure. Normalized

by aspect ratio we obtain (CL/AR) = 0.420 for an aspect ratio

of 1.84. Wentz (refs. 9 and 10) obtains the values CL = 0.70

and (CL/AR) = 0.43, respectively, his aspect ratio being 1.61.

While the agreement is very good, it is difficult to interpret

3
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this result, in that the nonlinear portion of the lift can be

considered the product of the vortex strength and span, which

could both be somewhat in error while still producing the

correct overall lift.

Again by integration we obtain a center of pressure of

- Xcp = 0.77 compared to Wentz's Xcp = 0.58. That is to say,

the calculation shows rather more lift on the aft sections.

This is most likely attributable to the presence of the sting

on the wing, which maintains the lift near the "trailing edge",

as can be seen from the Cp contour plots.

3.4 Notes on the ILLIAC IV Calculation

The plan in this work was to run the AIR3D code on the

CDC 7600 to evaluate its ability to treat slender thin wings

and if successful then move to the ILLIAC IV where a finer

mesh could be used. The calculation performed on the CDC 7600,

while generally successful, did not permit a sufficient number

of grid points to capture the boundary layer. A typical

boundary layer velocity profile occurs on the windward side

[Fig. 50(c)], but it is "stretched out" to about ten times

what one would normally expect for a Reynolds number of 500,000.

Clearly, it was necessary to calculate on a finer mesh. Thus,

the calculation was programmed for the ILLIAC IV computer.

Fortunately, the program AIR3D has been implemented on the

ILLIAC IV and run for simple geometries (ref. 17). The capacity

of the ILLIAC IV in 64-bit mode is 80 axial x 56 circumferential
x 48 radial grid points, a total of 215,040 or about ten times

what could be done on the CDC 7600. Simpler geometries, like

the hemisphere cylinder, has been run before, but this new

calculation would be more complicated, and on a slightly larger

mesh than had been run before.
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The unique nature of the ILLIAC hardware requires equally

unique data structures. Thus, there was a time-consuming pro-

cess of generating the mesh, and formatting it and the data

onto files which could be used by the ILLIAC.

A new problem was chosen, with a somewhat simpler geometry,

in order to concentrate on modeling the leading edge vortex to

see if better agreement could be obtained on spanwise location

and surface pressure distribution. The problem selected was

a simple delta wing of unit aspect ratio, at 20.50 angle of

attack, such as had been investigated by Hummel (refs. 7 and 8).

It was clear from experience with the CDC 7600 calculation

that the orthogonal mesh used there inhibited convergence.

Thus a new, clustered mesh, nonorthogonal in the crossflow

planes, was generated for the new calculation.

The new mesh was written onto tape and the code was

assembled on tapes for the ILLIAC IV computer. The code was

run for 100 iterations, long enough to make sure it was running

properly and to impose the boundary conditions. The CPU time

was about 72 seconds per iteration. Unfortunately, the ILLIAC

IV was decomissioned before further iterations could be run,

and no further work was possible.

The code AIR3D is being rewritten for use on the CRAY-I

but it will not be possible to run the code on the CRAY until

the size of the memory is extended to 8 million words, which

* will not occur until 1983.

3.5 Note on Mesh Generation

It was noted during the work that the largest permissible

timestep for a given Courant number was controlled by the mesh

cell size near the leading edge. This is illustrated in the

closeup of the mesh, Figure 56. Consider a crossflow plane

where the semispan is b, and the minimum radius at the edge
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has the value 0. Then the = constant surfaces, those surfaces

Iparallel to the wing surface, are given by the ellipses.

zb = [(y + 0) 2 + b 2 ]1 / 2

Differentiating, we find

dy= z

dz

For small z, we have dy : (dz). Since z/b is of the order

0.01 near the z = 1 plane, this compression of the C = const.

surfaces near the edge slowed down the maximum timestep by at

least an order of magnitude.

A remedy for this, which was checked in working out

the mesh for the ILLIAC IV calculation was to use the non-

orthogonal mesh

z = [(y + 0) n + bn]I1/n

which is orthogonal for n = 2. For n = 1, there were problems

with skewness of the mesh; n = 1.5 provided a good compromise,

and allowed a tenfold larger time-step for a given Courant

number. The visible improvement over Figure 56 is seen in

Figure 57, where the same region of -he edge is shown in

the new mesh.

4. CONCLUDING REMARKS

The objective of this portion of the strake vorticity

shedding work was to demonstrate that computational solutions

could be used to enhance one's knowledge of an experimentally

determined flow, particularly for regions in the flow where
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measurements are very difficult to obtain. In order to use a

computational solution in this manner, the important features

of the computational solution must agree well with those of

the experiment. In the two cases considered here, the flow

is dominated by shear layers separating from an edge which

depends strongly on the boundary layer characteristics of the

flow approaching the edge. Thus, it is important to 1i able

to adequately resolve and describe in the computation the

boundary layers on the surfaces approaching the edge and the

large flow property gradients in the shear layer adjacent to

the edge.

The two cases considered here were a two-dimensional flow

normal to a thin flat plate and a three-dimensional flow over

a thin slender wing at moderate angle of attack. In spite of

the fact that the two cases are conceptually simple, there is

little flow field data available. In the two-dimensional case,

the data consist of laser velocimeter measurements taken as an

earlier part of this study and data taken 6 decades ago with a

hot wire anemometer. In the three-dimensional case, there are

flow field data above the wing and pressures on the wing, but

no data near the edge to define the shear layer and vorticity

shedding rate.

It is important to note that when the present investiga-

tion was initiated, neither the two-dimensional nor the three-

dimensional computer code had been used to compute flows withI
substantial separation. Hence the present work can be viewed

as a preliminary study of the ability of these computer codes

to capture and represent the various separated flow phenomena.

In both cases, the important flow features of the compu-

tational flow agreed qualitatively with those shown by the

data. Specifically, the computational boundary layers on the

windward and leeward surfaces near the edge generated vorticity
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which appears in a shear layer leaving the edge. In the two-

I 0dimensional case, the primary separation bubble behind the
plate plate had nearly the same axial and lateral extent as

shown by the experiment. In the three-dimensional case, the

computational vorticity appeared in the flow above the wing,

M although it did not tend to roll up into a concentrated vortex

as the experiment shows [compare Figs. 48(b) and 58].

In both cases, computational mesh size and arrangement

limitations are an important factor in the comparisons with

data. It was not possible to keep enough mesh points in the

boundary layer and still define well enough the flow away from

the surface. This was particularly so for the three-dimensional

case, which had a much more severe storage problem for the

computer. This is felt to be a major limitation in achieving

the objective of using computational flow fields to augment

experimental measurements.

In both cases, the computational problem was slightly,

but probably importantly, different than the experimental

problem. In the two-dimensional case, the experimental flat

plate normal to the flow was required to have a splitter plate

downstream to enforce steady flow and a plane of symmetry.

Thus, the boundary condition on the plane of symmetry in the

experiment was a no-slip zero-velocity condition yielding a

forward moving boundary layer which caused secondary separation

to occur on the splitter plate just downstream of the plate.

The computation had a plane of symmetry condition only, with

a no-slip condition only on the back face of the plate, which

yielded secondary separation on the back face of the plate near

the edge. These differences were probably responsible for some

of the differences in the vorticity shedding rate and location
of the shear layer.
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In the three-dimensional case, the forward portion of the

wing was not thin because of a limitation in the "body" geometry

the code could handle. Also the code could not treat a trailing

edge. Both of these factors would affect the load distribution,

as compared to the experiment and possibly the general charac-

ter of the vorticity-dominated region above the wing.

In the three-dimensional case, there was also a qualita-

tive difference between the computational and experimental flow.

The computational suction peak was further outboard than the

measured one, and the computational vorticity appears to be

more diffuse above the wing than the data would indicate. The

extent to which these differences are dependent on the mesh

size and arrangement and the wing geometry model is not clear.

In the three-dimensional calculation, it became clear that

the design of the coordinate mesh has a significant effect on

the convergence time of the solution, as well as on the accu-

racy with which the features of the flow can be predicted with

a fixed mesh (in which the mesh points do not move as the solu-

tion progresses) ; one must pre-cluster the points where the flow

features are expected to appear. Here, we clustered the points

near the vortex loci shown by the data, but the code caused

the vorticity to occur at a different spanwise location. In

an adaptive mesh algorithm, the points are allowed to move in

such a manner as to "capture" the flow phenomena. Although

the storage problem is not eased, an adaptive mesh algorithm6
should provide better definition of the flow, and thus an

improved solution for a given amount of computer time.

In summary, it appears that for two dimensional flows with

* separation, there is probably a reasonable expectation for

using computational solutions for augmenting experimental ones,

provided care is exercised in modeling the flow and generating

the mesh. For three-dimensional flows, the problem appears
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more difficult because of the mesh requirements and the addi-

*tional computer storage due to the third dimension and would

probably require the development of an adaptive mesh algorithm.

REFERENCES

1. Spangler, S. B., Schwind, R. G., and Owen, K.: Experi-
mental Results on Vorticity Shedding at the Edge of a
Flat Plate in Two-Dimensional Flow. NEAR TR-224, Sept.
1980.

2. Beam, R. M. and Warming, R. F.: An Implicit Factored
Scheme for the Compressible Navier-Stokes Equations.
AIAA J., Vol. 16, No. 4, 1978.

3. Steger, J. L.: Implicit Finite Difference Simulation of
Flow about Arbitrary Two-Dimensional Geometries. AIAA J.,bk Vol. 16, No. 7, 1978.

4. Mehta, U. and Lomax, H.: Numerical Prediction Methods.
In Transonic Aerodynamics, ed. D. Nixon, Progress in
Aeronautics and Astronautics, Vol. 81, 1982 (to be
published).

5. Rosenhead, L.: Laminar Boundary Layers. Clarendon Press,
Oxford, 1963.

6. Pulliam, T. H. and Steger, J. L.: Implicit Finite
Difference Simulations of Three-Dimensional Compressible
Flow. AIAA J., Vol. 18, No. 2, Feb. 1980, pp. 159-167.

7. Hummel, D.: Zer Unstromung sharfkantiger schlanker
Deltaflugel bei gro en Anstellwinkeln. Z. Flugwiss.,
15 (1967) Heft 10, pp. 376-385.

8. Hummel, D.: On the Vortex Formation over a Slender Wing
at Large Angles of Incidence. AGARD CP-247, Paper #15,
1978 (Sandefjord, Norway).

9. Wentz, W. H., Jr. and McMahon, M. C.: An Experimental
Investigation of the Flow Fields about Delta and Double-
Delta Wings at Low Speeds. Wichita State University
(Kansas), Aeronautical Report 65-2, Aug. 1965.

10. Wentz, W. H., Jr. and McMahon, N. C.: Further Experimental
Investigations of Delta and Double-Delta Wing Flow Fields
at Low Speeds. NASA CR-714, Feb. 1967.

41



11. Liepmann, H. W. and Roshko, A.: Elements of Gasdynamics.
John Wiley and Sons, New York, 1957.

12. Brown, C. E. and Michael, W. H., Jr.: On Slender Delta
Wings with Leading-Edge Separation. NACA Tech. Note
3430, Apr. 1955.

13. Jones, R. T.: Properties of Low-Aspect-Ratio Pointed
Wings at Speeds Below and Above the Speed of Sound.
NACA Rept. No. 835, May 1945.

14. Sforza, P. M. and Smorto, M. J.: Streamwise Development
of the Flow over a Delta. AIAA J., Vol. 19, No. 7,
July 1981, pp. 833-834.

15. Lamar, J. E.: Comment on "Streamline (sic] Development
* of the Flow over a Delta Wing." AIAA J., Vol. 20, No. 4,

April 1982, p. 576.

16. Sforza, P. M. and Smorto, M. J.: Reply by the authors to
J. E. Lamar, AIAA J., Vol. 20, No. 4, Apr. 1982, p. 576.

17. Pulliam, T. H. and Lomax, H.: Simulation of Three-Dimen-
* .sional Compressible Viscous Flow on the ILLIAC IV

Computer. AIAA Paper 79-0206, Jan. 1979.

0

42

O



Yf,

Outflow plane

Far field
Symmetry boundary
plane

N

thin flat plate

Inflow plane

h.

Figure 1. Two-dimensional flow domain
semispan length i = 1.

43



1. 
15 B.L. pts

0 (d) 40/38 x 78 pts

M.1.6
U

u 1.4

4.4
'4-1

0
U 12 B.L. pts
S1.2 (c) 40/38 x 78 pts

*) EXACT(-(e) 30/48 x78 pts (b) 33/12 x 78 pts
1.0 PRESSURE 8 B.L. pts 8 B.L. pts

0 (Isentropic
a, compression)

Sca 0.8
0

•0.6

(a) 24/21 x 78 pts
8 B.L. pts

*0.4

0.2

0.0002 0.0005 0.001

DY

Figure 2. Windward stagnation pressure coefficient
as a function of nesh spacing near rlate DY and

rumbr of n)cints in boinda-r, lac.

44

-e



...... ..

20.0-

-6.0-

8.05 ;. i~s 65 1.

Ix

405



I-7

07-.

0.3I

1211

Figure 4. Detail of grid plot near the
2-dimensional strake.

46



10.0

3.0

1.0

0.3

0.1

MAX. CFL 35 MAX. cFL 3

.03 Lt.= 0.01 Lt = 0.001

.01

.003 III

0 1000 2000 3000 4000 5000 6000

Iterations

Figure 5. Convergence history - two-dimensional strake
Moo 0.5, Re = 0.5 x 106.

47



xix 0
M E i r4

0 0 x

0 0 O

0 I0

0 U0

0 -00w-.

0

0

. .0 /~ 04

0 >4

Ix 
0

*1 U1

0

48-



1Exact solution (Rosenhead)

.9

l Numerical

.8 
asymptote

.7 Numerical solution
DY = 0.0005

6000 Iterations

.6

.5 i

.4

.3

.2

.1

I I
0 1 2 3 4 5 6(I1/2

- (.57) 1 /2
t

Figure 7. Stagnation point boundary layer velocity profiles.

49

I



5 I- I i| I

4
IiLI,

3 _Exact solution
(Rosenhead)

II

Numerical

DY0 = 0.0005

6000 Iterations

0

0 12 3 4 5

= (0.57) 1/2 1

Figure 8. Stagnation point boundary layer
velocity profiles.

5

50

U



20.0

I

16.0

444 4 4 4 4
12.0

L. .0

-4.0
* ~8.0 ; I

0.0 40 80

(a) Entire flow domain

Figure 9. Velocity vector plot.

51



vI

-3.0 .. ,,'ff~

-40 ~ .*, /~///

y
-50,G*l~/~~/!!4 ?1 T /

a ~ *4 /J,~/// / - /0

-4.0

-a o
Go o jo 0 o ;

(b Flo deai uptra of plate 4

Fiue . (Cnine)

~ 7 /5T



6.0

5.0 4 4

4.0

3.0

..0 . 2.0 3.0 4 . 4 7.0
I I TI T T''

•]i o°n I J - . ,. . .

-1

0 .0 , 20 3 0 50 6 .

(c) Flow detail just downstream of plate

Figure 9. (Continued).

53



12.0-

00

y

- 6.0

(d) Flow detail near aft end of
separation bubble

Figure 9. (Continued).

54



20.0-

'so0 77~1 11i111

"00

14.0-

130
.0.0 1.0 2.0 3.0 4.0 ;.0 6.0 4.0

(e) Flow detail well downstream of plate

Figure 9. (Concluded).

55



2.3-

1.9

y
0.7-

05 _______

*0,0 0A 6.8 12 26 2.0 24 29

Figure 10. Detail of velocity vector plot.

65



U

*

0.45- V

0.35-

0.25-

0 y

.. .. .. .. .. .A444 44444 4-AAAA

-0,15

-0.25

0.0 0.1 0.2 0.3 04 05 0.6 07

(a) Inner part of plate

Figure 11. Detailed velocity vector plot of the
flat plate boundary layer.

57



OL15 .

Fgr 1 . (Concluded).

4- -, -- -
v

- 5

.. ........... ..... - ,- 7 / /

Figur.11. Conclded)

-Gil58

SI



0.25- V

. -:. , .-. . . - - .- .. . ' ... - - .- , -. , - . : , -0.20 .. .- .- • . , .- . - - . ' ... . . .. :

0.20

y.

0.05- * *

0.00- A.LL LbbL

-0.05,

13

-020 o .5 090 .95 2o00 13 .10 1'.15

Figure 12. Detailed velocity vector plot of secondary
separation bubble and shear surface

59

' -



06.0

-4.0

08.0

F0.0 40o 8.0
x

* Figure 13. Stream function contour of
entire domain.

60



12.

p4.0

t I4.0-

40.

U~ 0,

00 2.0 4,0 80 s

Figure 14. Stream function contours
of leeside of the plate.

61



00 0912 1 20 i4 2

Fiur 15 Stemfnto otuso eodr

Figurepa5. iStrea bbfunctionhcontourfasecodr

62



11 I
07-

-01

- 0.0 0.4 0.8 12 1.8 20 i.4 i's

Figure 16. Mach number contours of flow over plate
at M. - 0.5 and Re = 0.5 x 106.

63



Z.3

-0.5 4

0I.0.0 04 0.3 1.2 i.6 2.0 2.4 i's

* Figure 17. Pressure contours of flow over
plate at M. 0.5 and Re =0.5 x 106.

64



2-3-

-051

0.0 0.4 0h 5. I's 2.0 2.4 2.8
x

Figure 18. Density contours of flow over plate
at M 0.5 and Re = 0.5 x 106.

65

EL



44

'-40)

U) Uo
UjU

I.' 0

x C

CI~~ 0 , x

C: r

L.4 *
-.- 4

M0
>. tu4

ge

0~ t~ 66



1.2

1.0

0.8

C Numerical results
p (6000 its)

0. DY = .0005 77 x 78 mesh

(Moo 0.5 & Re = 0.5 x 106

Experimental

0 0 >0

0 .010
0.2

S-2.8 '0

0 0.2 0.4 0.6 0. 8 1.0

Figure 20. Static pressure on windward side
of the plate.

67



1.2

M.~ 0. 5 VOY

1.0

0.8

1'u

0.6 '

0.4

0.2

0.0

-0.2U

-0.4

0 Numrical, Re =0. 5 W0 x =1. 314

-0.6 UExperimental , Re = 0. 15 x W0 x = 1. 300

-2 -1 0 1 2 3 4

y

Figure 21. Axial va~riation of axial velocity
at x 1.3.

68



1.0

l 0.8 VFYI

"* I
0.6

x, u

0.4I

UUu 0 20

0.2

0.0

-0.2

-0.4 - Numerical, Re = 0.5 x 106, x = 1.314-

* Experimental, Re = 0.15 x106,

-0.6 - x = 1.300

I I I I

-2 -1 0 1 2 3 4
Y

Figure 22. Axial variation of spanwise velocity
at x - 1.3.

69



1.2

1.0

0.5

0.6H 1
tv.,

0.4I

0.2

0.0

-0.2

-0.4

-0.6

-2 -1 0 1 2 3 4

y
*Figure 23. Axial gradient of spanwise velocity

at x = 1.3.

70



1.4 11

1.2

.0 Q

0.8 
- ~

0.6 Xo

V0

0.4 0 Numerical, Re = . 5 X 106

y = 0.19816

0.5X 0
0.2 UExperimental, Re=0.5x0

y =0.2

0.0 4

-0.2

-0.4
0 1 2 3 4 5

X

Figure 24. Spanwise variation of axial velocity
at y 0.2.

71



0.9 I

* 0.8UI

- --.- -,

0.6 U v00

0 Numerical, Re 0.5x106

*0.5 y = 0. 19816

u . Experimental,

Re = 0.15 X 106

0.4 y = 0.2

0.3

0.2

6 0.1

6 0.0.

0 1 2 3 4 5
x

*Figure 25. Spanwise variation of spanwise velocity
aty 0.2.

72



U 5

1.0 x,u

1VaD

3-

C!
2-

Numerical
y 0.1982 6
Re =0.5 x 1

1 * Experimental
y =0.2
Re =0.15 x 10~

0 0.4 0.8 1.2 1.6 2.0

x

Figure 26. Spanwise gradient of axial velocity.

73



2.8 .

2.4Iv Y

2.0 U-
1 x, u

1.6 J 10

1.2

0.8

-0.4 0ONumerical, y 0.198
F Re = 0.5 ,106

Experinentali =y 0.2
-0.8 Re = 0.15

-0. 8 LI - II
0 12 3 4 5

x

Figure 27. Axial gradient of spanwise velocity at y 0.2.

74



-7 7U0,7

y,v

-6-

5 1.0 xr~u

V0

£ -4

-3

-OC>Numerical
y =0.1982

-2 - Re =0.5 x 106

3 3 Experimental
-1y =0.2

0 0.4 0.8 1.2 1.6 2.0 2.4

x

Figure 28. Spanwise variation of vorticity at y 0.2.

75



-2.8

-2.4UlvY

-2.0

-1.2

ONumerical
-0.8y =.198-0.8Re =0.5 x106

*Experimental

-0.4

* 0.4

0.8

0 12 3 4 5
x

Figure 29. Vorticity transport rate at y 0.2.

76



a
1.4 1 11

1.2

1.0

0.8 

A

0.6 ,

V 1 Xu

0.4

0.2

U U
* 0U

-0.2

--ONumerical, Re 0.5 106, y = 1.1283

-0.4

* Experimental, Pe = 0.15 106
y = 1.1000

-0.6

I I I
0 1 2 3 4 5 6

x

Figure 30. Axial velocity profile at y = 1.1.

77

| pI - -



0.71

v y
0.6

0.5xu
U'

0.4

0.3

0.2

0.1U

0 -_

-0 ONumerical, Re =0.5 10 6, y =1.128

*Experimental, Re = 0.15 io106 , ~~=1.100

* -0.2

0 1 2 3 4 5 6
x

*Figure 31. Spanwise velocity profile at v = 1.2.

78



2.0

1.6 vvy

1.2

1 , xu

0.8

-0.4

-0.8

012 3 4 5
x

Figure 32.- Axial velocity gradient at y =1.128.

79



2.0

1.6 -V, Y--------

1.2 -

0.8

0.4

0

-0.4

-0.8

0 1 2 3 4 5
x

Figure 33. Spanwise velocityv gradi-ent at y =118

80



-2.4111

13-2.0 vly j..-
-1.6

-1.2.

-0.8

* -0.4

* 0.4

0.8

0 1 2 3 4 5 6
x

Figure 34. Spanwise variation of vorticity at y 1.128.

81



-2.0

'v "
-1.2 -,_

1 X,U

-0.8

-0.4

0.4

0.8

0 1 2 3 4 5 6
x

Figure 35. Vorticity transport rate at v = 1.128.

82

I



Results

5-0.9 QNumerical,Re 0 .5xlO 6

-0.8 W Experimental, Re = 0.15l~xO 6

s (Velocity derivatives

Boundary results)
layer

-0.7U

*Experirnental, Re = 0.15x,06
(Thin shear layer approx.)

S-0.6
0

- 0.5

* Boundary
U layer at
-4-j plate tip

4' -0.4
0

3 -0. 3L

-0.2

-0.1

00 1 2 3 45 6 7

Figure 36. Comparisons of vorticity transport rates.

83



-1.6

* -1.4

-0.8

4,

'' -0.6

Re suits

-0.4 -ONumerical, Re 0.5 10 6

-0.2 tExperimental, Re = 0.15,10 6
(Velocity derivatives)

0 *Experimental, Re = 0.15-10 f
(Thin shear layer approx.)

0 1 2 3 4 5 6

y

Figure 37. Spanwise integrated vorticity.

S9



LL

ix -4

to Q

E E

0t ,

o0

-4 -4

4)4

4) 4J

L 0

4-)

0

4

ID r
C!N

1-

S .4-4olT

I I II _____85



TWO-DIM FTRAKE M =.5 A =90

20 - .4.4 4 , 4 . 1

14444444 4

o4 4 4 4

&20

4b

-4.0

x

Figure 39. Axial velocity vector plots.

86



*2.3

.1.
A- ... A.

2031

, [,

II,..... ... Ii t

. . . .......... . ....... ,

00 04 0.8 1.2 16 20 24 2
x

Figure 40. Detail of axial velocity vector plot

87



-4-

--- --- -- - - - -

E.-.)

88'



. .....1

JPLOT-25 PH ICL 36.87 ZCENT= 1.03 SlGMAX= 10.00 S1= Z.00

X M N7-6.96 XMX= 15.04 YMN=-11.00 YMX= 11.00 S2= 0.30 S3= 2.00

Figure 42. Crossflow plane elliptic coordinates.

89



Front and rear surfaces
are plane of symmetry

10
1 

)

- 90



X-Z PLANE PROJECTION OF L=CONSTANT SECTION

y~ 0 1

- L=9 SMAX= 10.00 PH I(L)= -11.25 BLR= 0.200 Z1= 0.01 Z2 = 0.50
ZM N=15.00 ZMX= 16.00 XMN=-10.00 XMX= 21.00 Z3 = 1.00

Figure 44. Mesh arrangement in y =0 plane.

91



0'

0,

0 0

o 0

C)

C

04-

*0

(N

*~ C.

00 N

TrnpT sq>j

92



100

o .0

"-4

Cn 41.

'-4 L) 0
f--

CC)

-4-

fu rzr 0

r r

93



q7F 56U3 DO1B L E D ELTA J 12 Z =.'2496 B -.0669

0=~

0-0

11

m aW 00 am mr 2

(a Gri-pot

Fiue 7 Cosfo pae hratritcsa

r9



,D-Ai25 882 A NUMERICAL STUDY OF MTAKE AERODYNAMICS(U) NIELSEN- 2/2
A ENGINEERING AND RESEARCH INC MOUNTAIN VIEN CA

GKERLICK ET AL. JUL 82 NEAR-TR-278 N88014-78-C-8388

, UNCLSSIFIED 
F/G 2/4 NI I Ihh hiEEMShhhhhhhhoE

mhhhhhhhhhhhhE
sMMLImoso



M45II * L2 13 2 .

3.6

1125

MICROCOPY RESOLUTION TEST CHARTNATIONAL BUREAU OF STANDARDS- 963A



II

-or -. ia im i1 n.R

Uy

75/63.5 DOBL DELTA0 Re-~ Z.246 =.

Crslo pln veoiy etr

Fiur 47 (Cntnud)

!95

*

-22

". , /

i . . .. .. }

-m' - e ' / / ~' 5

Figre47 (Cntnud)

------ I



75/ 63 DOUBLE DELTA J=12 Z=.2496 B=.0669

z

M.=0.50 /00 e ,-

(c) ~ /rsfo ln vlct etr

Fiue4.(otne)

am in a~ a Bs gm96I



p ... b - -' . , , ora, %_ ".r a. j _ ., ,: , ,, -, ~ , . ,, ,... ' .. . .'....,,

75/63 DOUBLE DELTA J=12 Z=.2496 B=.0669

*Ia

L -o

nL

IIs

4 =

"U U

• I-

_I! __ ___. . . .__ __ __ __ ,__ __ -- ---__ __ __ __ _ __ __ __ __ /

M.= 050 a=9000 R'51

(d) Plot of C
p

Figure 47. (Continued).

97

L



75/63 DOUBLE DELTA J=12 Z=.2496 B=.0669

z

y

*. OW 05 0.00 Iter 5.01d

(e) Crossflow Mach number contours.

Figure 47. (Continued).

98



75/63 DOUBLE DELTA J=12 Z=.2496 B=.0669

-- -tz

M.= 0.50 o= 9000 Rp= 5.010

(f) Vorticity contours

Figure 47. (Continued).

99



75/63 DOUBLE DELTA J=12 Z=.2496 B=.0669

z

em Gs @i i m i i

y

M.Z 0.50 o~9000 R.' 5.01W

(g) Density contours

Figure 47. (Continued).

100



75/63 DOUBLE DELTA J=12 Z=.496 B=.0669

.I

Iz

-

- -, y

M. 050 0 9000 Re- svW0

(h) Pressure contours

Figure 47. (Concluded).

101



75 '6.3 DOUBLE DELTA J=16 Z=.502-3
0" 4

Figure4. Crsslo pln haatrstc t! 53

a102

---.-. 4-.

i-.
° ,

-175 463 D LBEm DTA bE=16 Z=.50

.. y

• '" (a) Gid plot"
Figre48--rsslo pln chrateisis t, =..3

6/

, _ .. ! : : ._, ..' ,;: ....,0 2

U---" - / "



75-63 DOUBLE DELTA, J=16, Z=.5025

zI
r 4 . ni d.

z _ ._---__103
* . . -/, A

- A * - - /

* A *, A /.
IT .A - .., ,S

i
J

1 '-' •pm

r == 050 o,= 9000 RA- 5.0"I0

(b) Crossf].ow pl.ane vel.ocity vsectors

Fi£gurce 48. (Continued).

:)103

K"



75-63 DOUBLE DELTA, J=16, Z=.5025

z

113 014 0

y
M.= W 9000 R-7 50-10

(c)s Coslwanevlct etr

Figre48 (Cntnud)

10



75-63 DOUBLE DELTA, J=16, Z=.50195

L

Ii Is

I, y

M., 0%O VOW 900e- so-to

Wd Plot Of C
Figure 48. (Continued).

105



75-63 DOUBLE DELTA, J=16. Z=-5025

z

I -~ y

M. 0 W a- 9000 Re 30-10'

(e) Crossf low mach number contours

Figure 48. (Continued).

106



75/'63 DOUBLE DELTA J=16 Z=.5025

urn

y

OW 0i0 90,00 Fle' 50-10'

(f) Vorticity contours

Figure 48. (Continued).

107



*75-63 DOUBLEDETJ1,Z.05

y

-~~ U. 050 o~9000 e SlO

(g) Density contours

Figure 48. (Continued)

108



75-63 DOUBLE DELTA, J=16, Z=.5025

- - y

M 05.0 a= 90.00 Re= 50,10,

(h) Pressure contours

Figure 48. (Concluded).

109



75 6:3 DOUBLE DELTA T-20 Z=-.76i32 B8--.681

AP m o, 3

z ~ ~ ~ a Grid7m:-- plot4

Figure ~49.- oslwpaecarceitc tx .6

I11



75/63 DOUBLE DELTA J=20 Z=.7632 B=.2681

"z

Am

-00.

(b rsslwpan eo i vcos

Figur 49 Contnue

_.__._.____ __ _ _ _ _,. i ~ .~ ,I
. m . , 'S

A /

i
o  Y

* I - 050 a:gOc0 li.: 5.0"10K- (b) Crossflow plane velocity vectors

Figre49. Continued

rl



75/63 DOUBLE DELTA J=20O Z=.7632 B=.2681

b
I

V,

°--

112

o-A

- °°

'% A

- ,7

/

4!5--

'V

" . 0.50 o1= 90.00) ft.= 5.0"a0

_ (c) Crossflow plane velocity vectors

Figure 49. (Continued).

il 112

-4



75/63 DOUBLE DELTA J=20 Z=.7632 B=.2681

-a,

cp
-A

-8*

Is

8* s 6, i is t m a

Uy
M. .0SW e .- 6

Plt f

Ip

Figure 49. (Continued).
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(e) Crossflow Mach number contours

Figure 49. (Continued).
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Figure 49. (Continued)
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Figure 49. (Continued)
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Figure 49. (Concluded).
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Figure 50. Crossflow plane characteristic for x =1.0.
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Figure 50. (Continued).
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(e) Crossf low Mach number contours

Figure 50. (Continued).
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Figure 50. (Continued).
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(g) Density contours

Figure 50. Continued.
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(h) Pressure contours
Figure 50. (Continued).
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Figure 56. Close up of orthogonal mesh near edge.
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